13.3 C
London
Sunday, June 4, 2023

Brittle-ductile transition stress of different rock types and its

- Advertisement -spot_img
- Advertisement -


  • Heard, H. C. Transition from brittle fracture to ductile flow in Solnhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure. In Rock deformation (eds Griggs, D. & Handin, J.) 193–226 (Geology Society of America Memoirs, 1960).

    Chapter 

    Google Scholar
     

  • Mogi, K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bull. Earthq. Res. Inst. 44, 215–232 (1966).

    CAS 

    Google Scholar
     

  • Mogi, K. Fracture and flow of rocks. Dev. Geotect. 4, 541–568. https://doi.org/10.1016/B978-0-444-41015-3.50034-3 (1972).

    Article 

    Google Scholar
     

  • Byerlee, J. D. Brittle-ductile transition in rocks. J. Geophys. Res. 73(14), 4741–4750. https://doi.org/10.1029/JB073i014p04741 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Evans, B., Fredrich, J. & Wong, T. F. The brittle-ductile transition in rocks: Recent experimental and theoretical progress. Geophys. Monogr. Ser. https://doi.org/10.1029/GM056p0001 (1990).

    Article 

    Google Scholar
     

  • Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. Fundamentals of Rock Mechanics 4th edn. (Wiley-Blackwell, 2007).


    Google Scholar
     

  • Wong, T.-F. & Baud, P. The brittle-ductile transition in porous rock: A review. J. Struct. Geol. 44, 25–53. https://doi.org/10.1016/j.jsg.2012.07.010 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schopfer, M. P. J., Childs, C. & Manzocchi, T. Three-dimensional failure envelopes and the brittle-ductile transition. J. Geophys. Res. Solid Earth 118(4), 1378–1392. https://doi.org/10.1002/jgrb.50081 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lyakhovsky, V., Zhu, W. & Shalev, E. Visco-poroelastic damage model for brittle-ductile failure of porous rocks. J. Geophys. Res. Solid Earth 120(4), 2179–2199. https://doi.org/10.1002/2014JB011805 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W., Zhu, X. & Jing, J. The analysis of ductile-brittle failure mode transition in rock cutting. J. Petr. Sci. Eng. 163, 311–319. https://doi.org/10.1016/j.petrol.2017.12.067 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Aharonov, E. & Scholz, C. H. The brittle-ductile transition predicted by a physics-based friction law. J. Geophys. Res. Solid Earth 124(3), 2721–2737. https://doi.org/10.1029/2018JB016878 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, J., Feng, X.-T., Zhang, X. & Yang, C. Brittle and ductile creep behavior of Jinping marble under true triaxial stress. Eng. Geol. 258, 105157. https://doi.org/10.1016/j.enggeo.2019.105157 (2019).

    Article 

    Google Scholar
     

  • Liu, S. L., Chen, H. R., Yuan, S. S. & Zhu, Q. Z. Experimental investigation and micromechanical modeling of the brittle-ductile transition behaviors in low-porosity. Int. J. Mech. Sci. 179, 105654. https://doi.org/10.1016/j.ijmecsci.2020.105654 (2020).

    Article 

    Google Scholar
     

  • Davarpanah, M., Somodi, G. & Vásárhelyi, B. Experimental determination of the mechanical properties and deformation constants of Mórágy granitic rock formation (Hungary). Geotech. Geol. Eng. 38, 3215–3229. https://doi.org/10.1007/s10706-020-01218-4 (2020).

    Article 

    Google Scholar
     

  • You, T., Waisman, H. & Zhu, Q. Z. Brittle-ductile failure transition in geomaterials modeled by a modified phase-field method with a varying damage-driving energy coefficient. Int. J. Plast. 136, 102836. https://doi.org/10.1016/j.ijplas.2020.102836 (2021).

    Article 

    Google Scholar
     

  • Jacquey, A. B. & Cacace, M. Multiphysics modeling of a brittle-ductile lithosphere: 2. Semi-brittle, semi-ductile deformation and damage rheology. J. Geophys. Res. Solid Earth 125(1), e018475. https://doi.org/10.1029/2019JB018475 (2020).

    Article 

    Google Scholar
     

  • Su, C., Qiu, J., Wu, Q. & Weng, L. Effects of high temperature on the microstructure and mechanical behavior of hard coal. Int. J. Min. Sci. Technol. 30(5), 643–650. https://doi.org/10.1016/j.ijmst.2020.05.021 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, B.-H. & Larson, M. K. Laboratory investigation of the anisotropic confinement-dependent brittle-ductile transition of a Utah coal. Int. J. Min. Sci. Technol. 31(1), 51–57. https://doi.org/10.1016/j.ijmst.2020.12.017 (2021).

    Article 

    Google Scholar
     

  • John, M. L. Porosity and the brittle-ductile transition in sedimentary rocks. AIP Conf. Proc 154, 229–242. https://doi.org/10.1063/1.36397 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kármán, T. Mitől függ az anyag igénybevétele? (What influences the strength of the materials?). Magyar Mérnök Egylet Közlönye 10, 212–226 (1910) (in Hungarian).


    Google Scholar
     

  • Kármán, T. Festigkeits Versuche unter allseitigem Druck. Z. Verhandl. Deut. Ingr. 55, 1749–1759 (1911) (in German).


    Google Scholar
     

  • Ledniczky, K. & Vásárhelyi, B. Brittle-ductile transition of anisotropic rocks during three-point bending test. Acta Geod. Geophys. Hung. 35, 75–80. https://doi.org/10.1007/BF03325596 (2000).

    Article 

    Google Scholar
     

  • Vásárhelyi, B. Tribute to the first triaxial test performed in 1910. Acta Geod. Geophys. Hung. 45, 227–230 (2010).

    Article 

    Google Scholar
     

  • Ván, P. & Vásárhelyi, B. Centenary of the first triaxial test – recalculation of the results of Kármán. In Eurock’2010 (Laussane), Rock Mech, in Civil and Environment (eds Zhao, J. et al.) 59–62 (Taylor & Francis, 2010).


    Google Scholar
     

  • Deák, F., Ván, P. & Vásárhelyi, B. Hundred years after the first triaxial test. Period. Polytech. Civil. Eng. 56(1), 115–122. https://doi.org/10.3311/pp.ci.2012-1.13 (2012).

    Article 

    Google Scholar
     

  • Erarslan, N. & Ghamgosar, M. Fracturing and indirect tensile strength of brittle and ductile rocks. 2014 ISRM European Regional Symposium on Rock Engineering and Rock Mechanics: Structures in and on Rock Masses, EUROCK 2014, 321–324 (2014).

  • Paterson, M. S. M. & Wong, T.-F. Experimental Rock Deformation: The Brittle Field (Springer, 2005).


    Google Scholar
     

  • Wang, S. & Yang, S. Q. A new constitutive model capturing brittle–ductile transition for crystalline marble. Arab. J. Geosci. 15, 996. https://doi.org/10.1007/s12517-022-10219-x (2022).

    Article 

    Google Scholar
     

  • Walton, G. A new perspective on the brittle-ductile transition of rocks. Rock Mech. Rock Eng. 54, 5993–6006. https://doi.org/10.1007/s00603-021-02595-9 (2021).

    Article 

    Google Scholar
     

  • Feng, X. T. et al. Dynamic design method for deep hard rock tunnels and its application. J. Rock Mech. Geotech. Eng. 8(4), 443–461. https://doi.org/10.1016/j.jrmge.2016.01.004 (2016).

    Article 

    Google Scholar
     

  • Walton, G., Arzúa, J., Alejano, L. R. & Diedrichs, M. S. A laboratory-testing-based study on the strength, deformability, and dilatancy of carbonate rocks at low confinement. Rock Mech. Rock. Eng. 48, 941–958. https://doi.org/10.1007/s00603-014-0631-8 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. & Shao, J. Strength behavior, creep failure and permeability change of a tight marble under baud triaxial compression. Rock Mech. Rock Eng. 50, 529–541. https://doi.org/10.1007/s00603-016-1134-6 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schlumberger. Technical challenges-carbonate reservoirs. https://www.slb.com/technical-challenges/carbonates. Accessed 11 April 2021

  • Hoek, E. & Brown, E. T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34(8), 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X (1997).

    Article 

    Google Scholar
     

  • Hoek, E. & Brown, E. T. The Hoek–Brown failure criterion and GSI: 2018 edition. J. Rock Mech. Geotech. Eng. 11, 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001 (2019).

    Article 

    Google Scholar
     

  • Mogi, K. Experimental Rock Mechanics: 3 Geomechanics Research Series (Taylor & Francis Group, 2007).


    Google Scholar
     

  • Baud, P., Hall, S., Heap, M. J., Ji, Y. & Wong, T.-F. The brittle-ductile transition in porous limestone: Failure mode, constitutive modeling of inelastic deformation and strain localization. J. Geophys. Res. Solid Earth 126, e021602. https://doi.org/10.1029/2020JB021602 (2021).

    Article 

    Google Scholar
     

  • Wang, S. et al. A universal method for quantitatively evaluating rock brittle-ductile transition behaviors. J. Petr. Sci. Eng. 195, 107774. https://doi.org/10.1016/j.petrol.2020.107774 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Davarpanah, S. M., Sharghi, M., Vásárhelyi, B. & Török, Á. Characterization of Hoek–Brown constant mi of quasi-isotropic intact rock using rigidity index approach. Acta Geotech. 17, 877–902. https://doi.org/10.1007/s11440-021-01229-2 (2021).

    Article 

    Google Scholar
     

  • Hoek, E. & Brown, E. T. Underground Excavation in Rock (Institution of Mining & Metallurgy, 1980).


    Google Scholar
     

  • Eberhardt, E. The Hoek–Brown failure criterion. Rock Mech. Rock Eng. 45, 981–988. https://doi.org/10.1007/s00603-012-0276-4 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Singh, M., Raj, A. & Singh, B. Modified Mohr-Coulomb criterion for nonlinear triaxial and polyaxial strength of intact rocks. Int. J. Rock Mech. Mining Sci. 48(4), 546–555. https://doi.org/10.1016/j.ijrmms.2011.02.004 (2011).

    Article 

    Google Scholar
     

  • Peng, J., Rong, G., Cai, M., Wang, X. & Zhou, C. An empirical failure criterion for intact rocks. Rock Mech. Rock Engng. 47, 347–356. https://doi.org/10.1007/s00603-012-0355-6 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Schwartz, A.E. Failure of rock in the triaxial shear test. In: Proc. 6th Rock Mech. Symp. Rolla, 109–151 (University of Missouri, 1964)

  • Herrmann, J., Rybacki, E., Sone, H. & Dresen, G. Deformation experiments on bowland and posidonia shale—part i: Strength and young’s modulus at ambient and in situ pc–T conditions. Rock Mech. Rock Eng. 51(12), 3645–3666. https://doi.org/10.1007/s00603-018-1572-4 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nicolas, A. et al. Brittle and semibrittle creep of tavel limestone deformed at room temperature. J. Geophys. Res. Solid Earth 122(6), 4436–4459. https://doi.org/10.1002/2016jb013557 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Iyare, U. C., Blake, O. O. & Ramsook, R. Modelling the failure behaviour of mudstones under high pressures. Rock Mech. Rock Eng. 54, 2815–2828. https://doi.org/10.1007/s00603-021-02467-2 (2021).

    Article 

    Google Scholar
     

  • Zuo, J. & Shen, J. The Hoek–Brown Failure Criterion—From Theory to Application (Springer, 2020). https://doi.org/10.1007/978-981-15-1769-3.

    Book 

    Google Scholar
     

  • Sheorey, P. R. Empirical Rock Failure Criteria 1st edn. (Central Mining Research Institute, 1997).


    Google Scholar
     

  • Tsikrikis, A., Papaliangas, T. & Marinos, V. Brittle-ductile transition and Hoek–Brown mi constant of low-porosity carbonate rocks. Geotech. Geol. Eng. 40, 1833–1849. https://doi.org/10.1007/s10706-021-01995-6 (2022).

    Article 

    Google Scholar
     

  • Rocscience RocData. Version 5.0, Rocscience Inc. www.rocscience.com (2015)

  • Hoek, E. & Martin, C. D. Fracture initiation and propagation in intact rock: a review. J. Rock Mech. Geotech. Eng. 6(4), 278–300. https://doi.org/10.1016/j.jrmge.2014.06.001 (2014).

    Article 

    Google Scholar
     

  • Asszonyi, C., Fülóp, T. & Ván, P. Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27, 971–986. https://doi.org/10.1007/s00161-014-0392-3 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Berezovski, A. & Ván, P. Internal Variables in Thermoelasticity (Springer, 2017).

    Book 
    MATH 

    Google Scholar
     

  • Barnaföldi, G. G. et al. First report of long term measurements of the MGGL laboratory in the Mátra mountain range. Class. Quant. Grav. 34, 114001. https://doi.org/10.1088/1361-6382/aa69e3 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ván, P. et al. Long term measurements from the Mátra gravitational and geophysical laboratory. Eur. Phys. J. Spec. Top. 228, 1693–1743. https://doi.org/10.1140/epjst/e2019-900153-1 (2019).

    Article 

    Google Scholar
     

  • Source link

    - Advertisement -
    Google News
    Google Newshttps://news.google.com
    Google News is a news aggregator platform. It presents a continuous, customizable flow of articles organized from thousands of publishers and magazines.
    Latest news
    - Advertisement -
    Related news
    - Advertisement -