Home Science A of Bacteria for 3 ... in !

A of Bacteria for 3 … in !

Daniel Oberhaus

In 2018, a craft departed the International Station carrying unusual cargo: colonies of that had spent hanging out in . These intrepid microbes were the final samples to be returned to Earth as part of the Tanpopo mission, a Japanese astrobiology experiment studying the effects of the environment on simple organisms. If the microbes long-term exposure to the vacuum, it would be a significant boost for a controversial theory known as panspermia, which suggests that life hitches a ride between planets on asteroids, comets, and dust.

On Wednesday, new research from the Tanpopo team was published in Frontiers in Microbiology that details how multiple species of Deinococcus three straight of exposure to the hostile environment. This type of is renowned for its unusual ability to resist genetic damage from high doses of ultraviolet radiation, which classes it among other so-called “extremophiles” like tardigrades. But researchers weren’t sure exactly how it pulled off this feat.

Deinococcus is known to have several mechanisms to survive in harsh environments,” says Akihiko Yamagishi, a professor at Tokyo University and the lead scientist for the Tanpopo mission. “We tested which mechanisms are responsible and found, among others, that its DNA repair system is important for surviving in the environment.”

As part of the Tanpopo experiment, Yamagishi and his colleagues exposed dried colonies of three different species of Deinococcus to the vacuum of in an experiment module attached to the outside of the station. When the researchers rehydrated the colonies back on Earth, they found that their outermost layers had died from exposure to high doses of UV radiation. But the dead layers of protected the DNA of the microbes underneath from getting too damaged to survive. While the number of intact l genes gradually decreases from exposure to no matter how thick the colony is, the team’s results show that a pellet of just half a millimeter deep could survive for up to eight in .

It’s good news for proponents of panspermia, a theory that dates back to the early 1970s and suggests that life—including life on Earth—is seeded throughout the galaxy by microbes catching a ride on rocks. It’s far from a mainstream idea, but one of its earliest proponents, the mathematician Chandra Wickramasinghe, argues that it can explain several thorny problems with the emergence of life on Earth.

The typical explanation is that life emerged from a bunch of organic molecules slamming into each other in a roiling primordial ooze and gradually formed more complex molecules. Eventually these molecules combined to form single-celled organisms like , which then evolved into multicellular organisms, and so on. But evolution of life on Earth, as far as scientists can tell, proceeded in fits and starts. There were short spikes of speciation interspersed by longer periods of stasis. Once hit the scene about 4 billion ago, they remained the dominant life-form for 2 billion . Then there was an explosion of slightly more complex single-celled organisms called eukaryotes, which dominated for another billion before more complex organisms finally started to crop up.

Accounting for these long evolutionary lulls is tricky. One explanation is that these periods of equilibrium were punctuated by mass extinction events that created new opportunities for speciation. Believers in panspermia believe Earth’s unusual evolutionary timeline can be explained if early life was given a little nudge by wayward extraterrestrial microbes.

One panspermia theory, known as lithopanspermia, suggests that asteroids and meteorites slamming into Earth may have contained some basic organisms or genetic material that shifted the evolutionary trajectory of life on the planet. The amount of arriving on a single asteroid isn’t likely to shift evolution on an entire planet. But if biologically rich rocks were common in this part of the galaxy, they argue, the heavy bombardment that Earth experienced 4 billion ago might have been enough to do the trick. It’s a big assumption, but there’s some evidence to back up the idea. “When protected deep inside a rock, calculations have shown that can survive up to millions of ,” says Avi Loeb, a physicist at Harvard University.

- Advertisement -


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

- Advertisment -
%d bloggers like this: